A New Computing Method of First and Follow Sets

Jing Zhang

Abstract. First and Follow functions associated with a grammar G is important when conducting LL and LR (SLR, LR (1), LALR) parser, because the setting up of parsing table is aided by them. For the larger scale grammar, computing First and Follow sets by hand according to the definition brings not only huge intolerable workload but also mistakes, even if adopting automated tools it will cost more time. In order to solve this problem, based on the parallel algorithm already existing, a new method of computing First and Follow sets was brought forward in this paper. This method can not only improve computing efficiency but also avoid errors, and it has both the theoretical and realistic significance for parallel compiler processing.

Keywords: First and Follow Sets, parallel processing, efficiency, avoid errors

1. Introduction

There are three general types of parsers for grammars. Universal parsing methods such as the Cocke-Younger-Kasami algorithm and Earley’s algorithm can parse any grammar. These methods, however, are too inefficient to use in production compilers. The methods commonly used in compilers are classified as being either top-down or bottom-up. As indicated by their names, top-down parsers build parse trees from the top (root) to the bottom (leaves), while bottom-up parsers start from the leaves and work up to the root. The most efficient top-down and bottom-up methods work only on subclasses of grammars, but several of these subclasses, such as the LL and LR grammars are expressive enough to describe most syntactic constructs in programming language, parsers implemented by hand often work with LL grammars, parsers for the larger class of LR grammars are usually constructed by automated tools[1].

Both LL and LR (SLR, LR (1), LALR) parser is aided by two functions, they are First and Follow. If α is any string of grammar symbols, let First(α) be the set of terminals that begin the strings derived from α, if α*=>ε, then ε is also in First(α). Define Follow(A), for non-terminal A, to be the set of terminals a that can appear immediately to the right of A in some sentential form, that is, the set of terminals a such that there exists a derivation of the form S*=>αAaβ for some α and β, note that there may, at some time during the derivation, have been symbols between A and a, but if so, they derived ε and disappeared. This paper is mainly about how to compute First and Follow sets based on the algorithm of Yuqiang Sun [2].

2. Computing First and Follow

To compute First(X) for all grammar symbols, apply the Following rules until no more terminals or ε can be added to any First set [3].

1. If X is terminal, then First(X) is X.
2. If X→ ε is a production, then add ε to First(X).
3. If X is non-terminal and X→Y_1Y_2…Y_k is a production, then place a in First(X) if for some i, a is in First(Y_i), and ε is in all of First (Y_1)…First (Y_(i-1)); that is, Y_1…Y_(i-1)*=>ε. If ε is in First (Y_j) for all j=1, 2, …, k, then add ε to First(X)[4].

* Corresponding author.
E-mail address: China_ximeng@sohu.com.
Now define First (α) for any string $\alpha=X_1X_2\ldots X_n$ as follows. First(α) contains First(X_i)-{ε}. For each $i=2,\ldots,n$, if First(X_k) contains ε for all $k=1,\ldots,i-1$, then First(α) contains First(X_i)-{ε}. Finally, if for all $i=1,\ldots,n$, First(X_i) contains ε, then First (α) contains ε.

Given a non-terminal A, the set Follow (A), consisting of terminals, and possibly $\$, is defined as follows.

1. If A is the start symbol, then $\$ is in Follow (A).
2. If there is a production $B\rightarrow \alpha A \gamma$, then First ($\gamma$)-{$\varepsilon$} is in Follow ($A$).
3. If there is a production $B\rightarrow \alpha A \gamma$ such that ε is in First (γ), then Follow (A) contains Follow (B).

For example, in the grammar $E\rightarrow E+T \mid T$; $T\rightarrow T*F \mid F$; $F\rightarrow (E) \mid i$, we can get:

First (E) = { (, i }
First (T) = { (, i }
First (F) = { (, i }
Follow (E) = { +,), $ }
Follow (T) = { *, $ }
Follow (F) = { $ }
Follow (E) = { +, *,), $ }
Follow (T) = { *, $ }
Follow (F) = $ }

The computing method of First and Follow sets can adopt the algorithm of sets and matrix, in order to improve the efficiency of computing for larger scale grammar, we can conduct parallel processing.

3. Parallel processing

Parallel processing is the simultaneous processing of the same task on two or more microprocessors in order to obtain faster results: 1) To be run using multiple CPUs; 2) A problem is broken into discrete parts that can be solved concurrently 3) Each part is further broken down to a series of instructions, Instructions from each part execute simultaneously on different CPUs [5].

Before using parallel processing, parallelization processing was needed for the program, that is to say, it should allot each part of work to different processor. The processors can deal with different aspects of the same program at the same time.

Parallel computing have many advantages, such as: 1) Save time and/or money: In theory, throwing more resources at a task will shorten its time to completion, with potential cost savings. 2) Solve larger problems: Many problems are so large and/or complex that it is impractical or impossible to solve them on a single computer, especially given limited computer memory. 3) Provide concurrency: A single compute resource can only do one thing at a time. Multiple computing resources can do many things simultaneously.

For parallel processing’s advantages, Yuqiang Sun has provided a parallel computing method of First and Follow sets [2]. However, this method can only compute First sets accurately, when it comes to Follow sets, it can only compute accurately for partial grammars. That is, it is easy to omit something and make errors when it is used to compute Follow sets for some grammar. For example, in the grammar $E\rightarrow E+T \mid T$; $T\rightarrow T*F \mid F$; $F\rightarrow (E) \mid i$, if we use his algorithm, we can get:

First (E) = { (, i }
First (T) = { (, i }
First (F) = { (, i }
Follow (E) = { +,), $ }
Follow (T) = { +, $ }
Follow (F) = $

From the result, we can see that it can only compute First sets and Follow (E) correctly, but when it comes to Follow (T) and Follow (F), it can not give the correct answer.

Based on his theory, the author give a complementary to his algorithm in this paper, it perfects his algorithm. The main theories and algorithms are provided in the following two parts.

4. Theoretical foundation
In a given grammar G, S is the starting symbol, \(m \) is the number of elements in set \(V_N \) and \(n \) is the number of elements in set \(V_T \), that is, \(m = |V_N| \), \(n = |V_T| \). Alphabet set \(V = V_N \cup V_T \), \(V_N \cap V_T = \emptyset \). Let \(S_k \in V_N \), and \(S_i, S_j \in V \), here \(k = 1, 2, \ldots, m \); \(i, j = 1, 2, \ldots, m + n \).

Definition 1 If there is a production \(S_k \rightarrow S_j \cdots \), it is called: \(S_i \) is the start of \(S_k \), and it is written as \(S_k \) Start \(S_i \); If there is a production \(S_k \rightarrow \epsilon S_j \cdots \), it is called: \(S_j \) is the right of \(S_k \), and it is written as \(S_k \) Right \(S_j \).

Definition 2 If there is a derivation \(S_k^* \Rightarrow S_j \cdots \), it is written as \(S_k \) First \(S_j \); If there is a derivation \(S_i \cdots \Rightarrow S_k \), \(S_j \cdots \) it is written as \(S_k \) Follow \(S_j \).

Specifications:

1. If \(S_k \rightarrow \epsilon \), then \(S_k \) First \(\epsilon \)
2. S is the starting symbol, then \(S \) Follow \(S \).

The following theorems can be derived from Definition 1 and Definition 2.

Theorem 1: Let \(S_i \in V_N, S_j \in V_T \) (\(i = 1, 2, \ldots, m \);
\(j = 1, 2, \ldots, n \))

1. If \(S_i \) Start \(S_j \), then \(S_i \) First \(S_j \)
2. If \(S_i \) Right \(S_j \), then \(S_i \) Follow \(S_j \)

Theorem 2: Let \(S_i, S_k \in V_N, S_j \in V_T \) (\(k, i = 1, 2, \ldots, m \);
\(j = 1, 2, \ldots, n \))

1. If \(S_i \) Start \(S_k \) \(S_j \) Start \(S_j \), then \(S_i \) First \(S_j \)
2. If \(S_i \) Right \(S_k \), \(S_j \) Right \(S_j \), then \(S_i \) Follow \(S_j \)

Theorem 3: Let \(S_i, S_k \in V_N, S_j \in V_T \) (\(k, i, = 1, 2, \ldots, m \);
\(j = 1, 2, \ldots, n \))

1. In the same production, if there are relations of \(S_k \) \(\text{Start} \) \(S_i \) and \(S_i \) Right \(S_j \), and in the grammar \(G \), \(S_i \) First \(\epsilon \), then \(S_k \) First \(S_j \)
2. In the same production, if there are relations of \(S_k \) Right \(S_i \), \(S_i \) Right \(S_j \), and in the grammar \(G \), \(S_i \) First \(\epsilon \), then \(S_i \) Follow \(S_j \)

According to the definitions of First and Follow sets:

For \(A \in V_N \); First \((A) = \{ a \mid A \Rightarrow a \cdots, a \in V_T \} \)

Follow \((A) = \{ a \mid S \Rightarrow \cdots \cdot a \cdots, a \in V_T \} \)

According to the given theorems, we can get some conclusions:

1. (1) The case of \(A \) First \(a \), that is, \(a \in \text{First} \ (A) \), consists of some possible cases as Follows:
 (1.1) \(a \) Start \(a \)
 (1.2) \(A \) Start \(S_i \), \(S_j \) Start \(S_j \), \(\cdots \), \(S_i \) Start \(a \) (\(i = 1, 2, \ldots, m \))
 (1.3) In the same production, if there are relations of \(A \) \(\text{Start} \) \(S_i \) and \(S_i \) Right \(a \), and in the grammar \(G \), \(S_i \) First \(\epsilon \).

2. (2) The case of \(A \) Follow \(a \), that is, \(a \in \text{Follow} \ (A) \), consists of some possible cases as Follows:
 (2.1) \(A \) Right \(a \)
 (2.2) \(A \) Right \(S_i \), \(S_j \) Right \(S_j \), \(\cdots \), \(S_i \) Right \(a \) (\(i = 1, 2, \ldots, m \))
 (2.3) In the same production, if there are relations of \(A \) Right \(S_i \) and \(S_i \) Right \(a \), and in the grammar \(G \), \(S_i \) First \(\epsilon \).

5. The parallel computing method of First and Follow sets

Let \(M_s, M_R, M_F, M_r \) be the relation matrix of Start, Right, First and Follow respectively. From all the productions in grammar \(G \), we can get relation matrix \(M_s \) and \(M_R \). The elements in relation matrix \(M_s \) are defined as follows:

\[a_i = 1, \text{if } S_i \text{ Start } S_j, \text{ else } a_i = 0 \]

The elements in relation matrix \(M_R \) are defined as follows:

\[b_{ij} = 1, \text{if } S_i \text{ Right } S_j, \text{ else } b_{ij} = 0 \]

Here \(i = 1, 2, \ldots, m \); \(j = 1, 2, \ldots, m + n \)

Algorithm 1: The parallel algorithm for computing relation matrix \(M_r \) [2]

1. Construct relation matrix \(M_s \) from all the productions in grammar \(G \);
2. If \(\epsilon \) is the right side of a production in grammar \(G \), according to theorem 3(1), the relation matrix \(M_s \) should be revised, or else, go to (3);
3. Each row of relation matrix \(M_s \) is assigned to a processor, the number of processors is \(m \), and row \(i \) is assigned to \(P_i \) (\(i = 1, 2, \ldots, m \)).
(4) i = m
(4.1) for all \(a_{ik} \ (1 \leq k \leq i) \) in \(P_i \), par-do:

(4.1.1) if \(a_{ik} = 1 \), then the elements in the processor \(P_k \) are transferred to processor \(P_i \), and logical additions are performed with the original elements in \(P_i \) on the principle of left-justify, and the results are stored in \(P_i \), replacing the originals in \(P_i \), and marking \(a_{ik} \) as “used”

(4.1.2) take the element \(a_{ik} \) in \(P_i \) continually, until every element in \(P_i \) with the value of 1 has been marked;

(4.2) \(i = i - 1; \)

(4.3) if \(i \geq 1 \) then go to (4.1) else go to (5);

(5) End.

Finally, the elements from \(m+1 \) to \(m \) in \(P_i \) of the finished matrix show the relation matrix \(M_R \), and from \(M_R \) we can get the elements of First sets.

Algorithm 2: The parallel algorithm for computing relation matrix \(M_F \)

(1) Construct relation matrix \(M_R \) from all the productions in grammar \(G \);

(2) If \(\varepsilon \) is in the right side of a production in grammar \(G \), according to theorem 3(2), relation matrix \(M_R \) should be revised, else go to (3);

(3) Each row of relation matrix \(M_R \) is assigned to a processor, the number of processors is \(m \), row \(i \) is assigned to \(Q_i \) (\(i=1, 2, \ldots, m \)). All non-terminal can be named respectively as \(S_i \) (\(i=1, 2, \ldots, m \)).

(4) \(i = m \)

(4.1) for each \(b_{ik} \ (1 \leq k \leq i) \) in \(Q_i \), par-do:

(4.1.1) if \(b_{ik} = 1 \), First, the elements expressing the relation of \(S_i \) First \(\varepsilon \) are removed from the processor \(P_k \), then the other elements are transferred to \(Q_i \), and logical additions are performed with the original elements in \(Q_i \) on the principle of left-justify, and the results are stored in the processor \(Q_i \), replacing the originals in \(Q_i \), and marking \(b_{ik} \) as “used”;

(4.1.2) continue to take the element \(b_{ik} \) in \(Q_i \) , until every element in \(Q_i \) with the value of 1 has been marked;

(4.2) \(i = i - 1; \)

(4.3) if \(i \geq 1 \) then go to (4.1) else go to (5);

(5) For \(i = 1 \) to \(m \), par-do:

If there is a production \(S_i \rightarrow S_j \) or \(S_i \rightarrow \cdot S_j \) or \(S_i \rightarrow S_j \beta \) (\(S_i, S_j \in V_N \)) and \(\beta * \Rightarrow \varepsilon \) then the elements of \(Q_i \) are transferred to \(Q_j \) and logical additions are performed with the original elements in \(Q_j \) on the principle of left-justify, and the results are stored in the processor \(Q_j \), replacing the originals in \(Q_j \).

(6) End.

Finally, the elements from \(m+1 \) to \(m + n \) in \(Q_i \) of the finished matrix show the relation matrix \(M_F \), from which we can get the elements in Follow sets of non-terminals \(S_i \).

6. Application

6.1. Considering a non-operator grammar

Given a grammar \(G_1 \):

\[
\begin{align*}
E & \rightarrow E + T | T \\
T & \rightarrow T * F | F \\
F & \rightarrow (E) | i
\end{align*}
\]

There are three non-terminals in this grammar, so the elements in relation matrix \(M_S \) of \(E, T \) and \(F \) are stored in three processors \(P_1, P_2 \) and \(P_3 \) respectively, it is shown in fig. 1(a). According to algorithm 1(4), we can get the result of \(M_S \) after parallel processing, then we can get relation matrix \(M_F \) from it. Fig. 1(b) and fig. 1(c) demonstrate it.
From each row of M_f, we can get:
First (E) = \{ (, i\}
First (T) = \{ (, i\}
First (F) = \{ (, i\}

The elements in relation matrix M_R of non-terminals E, T and F are stored in three processors Q_1, Q_2 and Q_3 respectively (shown in Fig. 2(a)). According to algorithm 2(4), there is no change, then, according to algorithm 2(5), we can get relation matrix M_R after parallel processing. Correspondingly, we can get relation matrix M_F from it. Fig. 2(b) and fig.2(c) can demonstrate the process.

From each row of M_F, we can get:
Follow (E) = \{ +,), $\}
Follow (T) = \{ +, *,), $\}
Follow (F) = \{ +, *,), $\}

6.2. Considering a grammar with ϵ in productions
Given a grammar G_2:

\[
\begin{align*}
S & \rightarrow AB \mid DC \\
A & \rightarrow aA \mid \epsilon \\
B & \rightarrow bBe \mid \epsilon \\
C & \rightarrow cC \mid \epsilon \\
D & \rightarrow aDb \mid \epsilon
\end{align*}
\]
There are five non-terminals in this grammar, so the elements in relation matrix M_S of S, A, B, C and D are stored in five processors P_1, P_2, P_3, P_4 and P_5 respectively. It is shown in fig. 3(a). We can revise relation matrix M_S, and according to algorithm 1(4), we can get the result of M_S after parallel processing, then we can get relation matrix M_f from it. Figs. 3(b) through (d) show the process.

From each row, we can get:
- First (S) = \{a, b, c, ϵ\}
- First (A) = \{a, ϵ\}
- First (B) = \{b, ϵ\}
- First (C) = \{c, ϵ\}
- First (D) = \{a, ϵ\}

The elements in relation matrix M_R of non-terminals S, A, B, C and D are stored in five processors Q_1, Q_2, Q_3, Q_4 and Q_5 respectively. After revising, the relation matrix M_R is shown in fig. 4(a). According to algorithm 2(4), we can get the relation matrix M_R after parallel processing. Correspondingly, we can get relation matrix M_f from it. Fig. 4(b) and fig. 4(c) can demonstrate the process. From each row, we can get:
- Follow (S) = \{$\$\}
- Follow (A) = \{b, $\$\}
- Follow (B) = \{c, $\$\}
- Follow (C) = \{$\$\}
- Follow (D) = \{b, c, $\$\}
Compared with the original algorithm according to the definition, this algorithm has both the same function and the same result, but it has a faster speed, which is greatly attributed to the advantages of parallel processing. However, it is not obvious because there are only three or five productions in the two examples, if there are tens or thousands of productions, it will show its advantages.

In addition, compared with the algorithm put forward by Yuqiang Sun, this one is a complement for it. There is only a little difference in the algorithm, which is presented in Algorithm 2, it is about the parallel algorithm for computing relation matrix M_F. The author just adds a processing step (step 5), and it is what really makes the difference. It makes the algorithm perfect, it can compute accurately and suit for more grammars, such as the two examples prevented above.

The research of parallel syntax analysis has an important signification for the development of computer discipline and the application of parallel computer and processor. There are still a lot we can research deeply.

8. References

