Quadrotor Trajectory Tracking Control: A PD Control Algorithm

Zongyu Zuo

The Seventh Research Division, Beihang University (formerly Beijing University of Aeronautics and Astronautics), National Key Laboratory of Science and Technology on Holistic Control Beijing, China

Abstract—This paper constructs a relationship between attitude and translational movement of a quadrotor, and presents a PD logic tracking control design algorithm capable of not only stabilizing attitude but also tracking a desired trajectory accurately. In contrast to conventional flight control systems, the artificial inner-/outer-loop structure is eliminated via using a third-order time optimal tracking-differentiator. Simulation results demonstrate a better performance than that of conventional ones with timescale separation requirement.

Keywords-PD control; quadrotor; trajectory tracking; tracking-differentiator

1. Introduction

Quadrotor aircraft, consisting of four individual rotors of “X” arrangement, has some advantages over conventional helicopters in view of its configuration. In order to compensate the effect of the reactive torques, the four rotors are divided into two pairs of (1, 3) and (2, 4) turning in opposite direction, as shown in Fig.1. Hence, a quadrotor aircraft is suitable for hover and pseudo-static flight.

The quadrotor is a typical under-actuated, nonlinear coupled system: vertical motion created by collectively increasing and decreasing the speed of all four rotors; pitch or roll motion is achieved by the differential speed of the front-rear set or the left-right set of rotors, coupled with lateral motion; yaw motion is realized by the different reactive torques between the (1, 3) and (2, 4) rotors. And thus the number of individual manipulating variables cannot instantaneously set the accelerations in all directions of the configuration space. In spite of configuring four rotors, the quadrotor is still an under-actuated and nonlinear coupled system.

Pounds [1], McKerrow [2] and Hamel [3] studied the dynamical model of the four-rotor VTOL without considering the aerodynamic effects in their literature. Tayebi et al [4] made a slight modification of the gyroscopic torque expression on the dynamical model in [1] and [2], and designed an attitude stabilization PD² controller in unit quaternion frame that was frequently employed by spacecraft attitude control problem [5, 6]. Bouabdallah [7] applied the classical PID and LQ algorithm respectively to quadrotor attitude stabilization. However, the under-actuated and strong coupled properties of the quadrotor render the trajectory tracking control design much more challenging. In [8], Bouabdalla achieved the quadrotor trajectory tracking control using backstepping and sliding-mode techniques respectively based on classical inner-/outer-loop structure, but the two-timescale separation assumption requires large inner-loop gain to guarantee closed-loop stability [9]. Madani et al [10], [11] divided the quadrotor dynamics into three subsystems and adopted the same methodology to track the desired trajectory via full state backstepping approach. As for the uncertainty and the unknown dynamics, Waslander and Hoffmann [12] designed respectively an integral sliding mode and a
reinforcement learning control scheme to make a comparison, and the results demonstrated good robustness of
the both controllers.

The motion equations of a rotary aircraft contain translation and rotation of two components, and this
classification of the controls as force and moment generating is an artifact of the inner-loop-outer-loop control
design strategy [13]. The conventional manipulation when designing control systems for air vehicles is the
timescale assumption, which allows the inner loop and outer loop to be designed separately but requires the
outer-loop bandwidth to be much slower than that of the inner-loop. This paper first constructs respectively
the position and the attitude closed-loop equations employing PD nonlinear feedback linearization technique
[14]. To alleviate the timescale problem between attitude and linear dynamics, a time optimal third-order
tracking-differentiator is then introduced within the inner-/outer-loop structure. This kind of TD can achieve the
convergence of non-zero initial state to the origin in three steps, which results in better performance in alleviating the timescale separation than that of classical linear TD. Since the outer-loop bandwidth is closer to that of the inner loop, position tracking performance is increased. Finally, a simulation comparison with a control design algorithm in [16] which requires the timescale separation assumption demonstrates a better performance of the control design presented in this paper.

The paper is organized as follows. Section II presents the mathematical model of a quadrotor. Section III
develops a trajectory tracking control design algorithm, and section IV is devoted to stability analysis of the
closed-loop control system as well as guidelines for parameter selection. In section V, numerical simulation
of the proposed controller is discussed. Section VI is the conclusion of this paper.

2. Quadrotor’s Nonlinear Model

In view of modeling the quadrotor, several reasonable assumptions are first made: 1) quadrotor is a rigid
body; 2) aerodynamics can be ignored at low speed; and 3) quadrotor is symmetrical with respect to axes Ox, Oy
and Oz.

Let \(I = \{O_x, y, z\} \) denote an earth-fixed inertial frame and \(A = \{Oxyz\} \) a body-fixed frame whose
origin \(O \) is at the center of mass of the quadrotor, as shown in Fig. 1. The absolute position of the quadrotor is
defined by \(p = (x, y, z)^T \) and the attitude of the quadrotor by three Euler angles \(\Theta = (\phi, \theta, \psi)^T \). \(R \in SO(3) \) is the
orthogonal rotation matrix to orient the quadrotor.

\[
R = \begin{bmatrix}
c_\phi c_\psi & s_\phi c_\psi & -s_\psi \\
c_\phi s_\psi & s_\phi s_\psi & c_\psi \\
-s_\phi & c_\phi & 0
\end{bmatrix}
\]

where \(s_\phi \triangleq \sin \phi , c_\phi \triangleq \cos \phi \) and others are similar. The quadrotor is a six-degree-of-freedom rigid
described by three translations \(v = (v_x, v_y, v_z)^T \) and three rotations \(\Omega = (p, q, r)^T \). The quadrotor motion
equations can be therefore expressed as

\[
\dot{p} = v \quad (1)
\]

\[
\dot{\Theta} = W \Omega \quad (2)
\]

\[
mv = -mg\epsilon_z + TRe_z \quad (3)
\]

\[
I_i \dot{\Omega}_i = -\Omega \times I_i \Omega_i - G_i + \tau_i \quad (4)
\]

where

\[
W = \begin{bmatrix}
\sin \phi \tan \theta & \cos \phi \tan \theta \\
0 & \cos \phi & -\sin \phi \\
0 & \sin \phi \sec \theta & \cos \phi \sec \theta
\end{bmatrix}
\]

\(S(\Omega) \) is a skew-symmetric matrix, \(m \) denotes the mass of quadrotor, \(g \) the gravity acceleration,
\(\epsilon_z = (0, 0, 1)^T \) the unit vector, and \(T \) the total thrust produced by the four rotors:

\[
T = \sum_{i=1}^{4} f_i = b \sum_{i=1}^{4} \omega_i^2 \quad (5)
\]

The rotor dynamics are \(I_i \dot{\omega}_i = \tau_i - Q_i \quad (i=1,2,3,4) \) where \(I_i \) and \(\omega_i \) denote respectively the moment of
inertial and the speed of the rotor \(i \), \(\tau_i \) is the electrical torque of DC motor, and \(Q_i \) is the reactive torque.
caused by air drag and given by $Q = k\omega^2$, where the parameters b and k are some positive constants relative to air density and shape of the blade, \textit{et al.} The vector G_a denotes the gyroscopic torque and is given by

$$G_a = \sum_{i=1}^{4} I_i (\Omega \times z_i) (-1)^{i+1} \omega_i$$

(6)

Let l be the distance from the rotors to the center of mass, and then the control torques generated by the four rotors can be calculated as

$$\tau_a = \left(\begin{array}{c}
\tau_a^1 \\
\tau_a^2 \\
\tau_a^3 \\
\tau_a^4
\end{array} \right) = \left(\begin{array}{c}
bl (\omega_1^x - \omega_2^x) \\
bl (\omega_1^y - \omega_2^y) \\
k (\omega_1^x + \omega_2^x - \omega_3^x - \omega_4^x)
\end{array} \right)$$

(7)

Fig.1. Quadrotor Concept.

3. Control Design Methodology

In consideration of under-actuated and strong coupled properties of a quadrotor, this paper proposes a PD logic design based tracking controller without introducing classical inner-/outer-loop structure, as shown in Fig. 2. A retrofit is performed by employing a complementary third-order time optimal TD to estimate the dynamics of the commanded differential signals quickly instead of ignoring them or computing them tediously. And then compensate the estimated dynamics of the commanded differential signals into the attitude stabilization control law calculation.

3.1. Position tracking control design

Define the position error

$$p_e = p_c - p$$

where vector $p_c = (x_c, y_c, z_c)^T$ is the position commanded value. Then construct the position closed-loop equation as

$$\ddot{p}_c + K_1 p_c + K_2 p_e = 0$$

(8)

where K_1 and K_2 are both positive definite matrix. According to Routh-Hurwitz criterion, position error p_e converges to zero exponentially. Continuously, equation (8) can be rewrite as follows:

$$p = p_c + K_1 (p_c - p) + K_2 (p_c - p)$$

(9)

Define virtual control signal $U \triangleq \dot{p} = (U_1, U_2, U_3)^T$ and replace it into (3). We have
\[U = -ge_z + TRe_z / m \]

Moving the gravity acceleration item \(-ge_z\) to the left-hand side and then left multiplying rotation matrix \(R^T\) on both sides of the preceding equation yields

\[R^T (U + ge_z) = Te_z / m \]

i.e.

\[
\begin{bmatrix}
 c_\theta c_\psi & c_\theta s_\psi & -s_\theta \\
 s_\theta c_\psi - s_\psi c_\theta & s_\theta s_\psi + c_\psi c_\theta & s_\theta c_\psi + s_\psi s_\theta \\
 s_\theta c_\psi + s_\psi s_\theta & s_\theta s_\psi - c_\psi c_\theta & s_\theta c_\psi - s_\psi s_\theta \\
\end{bmatrix}
\begin{bmatrix}
 U_1 \\
 U_2 \\
 U_3 + g \\
\end{bmatrix}
= \frac{1}{m}
\begin{bmatrix}
 0 \\
 0 \\
 T \\
\end{bmatrix}
\]

After simple algebraic computation, the following equations hold:

\[U_1 c_\theta c_\psi + U_2 c_\theta s_\psi - (U_3 + g)s_\theta = 0 \] (11)

\[U_1 (s_\theta c_\psi s_\phi - s_\psi c_\theta) + U_2 (s_\theta s_\psi s_\phi + c_\psi c_\theta) + (U_3 + g)c_\theta s_\phi = 0 \] (12)

\[U_1 (s_\theta c_\psi c_\phi + s_\phi s_\psi) + U_2 (s_\theta s_\psi c_\phi - c_\psi s_\theta) + (U_3 + g)c_\phi c_\theta = T / m \] (13)

Using the fact that \(\cos \theta\) is non-zero, both sides of (11) can be divided by \(\cos \theta\) and pitch expression is obtained:

\[\theta = \arctan \left(\frac{(U_1 \cos \psi + U_2 \sin \psi) / (U_1 + g)}{U_3} \right) \] (14)

Equation (13) \times \sin \phi - (12) \times \cos \phi yields

\[T \sin \phi / m = U_1 \sin \psi - U_2 \cos \psi \] (15)

Using (10), the following relationship can be obtained

\[U_1^2 + U_2^2 + (U_3 + g)^2 = \left(\frac{T}{m} \right)^2 \] (16)

Combining (16) with (15) yields

\[\phi = \arcsin \left(\frac{(U_1 \sin \psi - U_2 \cos \psi) / \sqrt{U_1^2 + U_2^2 + (U_3 + g)^2}}{U_3} \right) \] (17)

To this end, equations (14) and (17) can be used to compute the required attitude command inputs to the rotation control design, and the virtual control signal \(U\) can be computed from (9). The closed-form expressions for pitch and roll attitudes are

\[
\begin{align*}
\theta &= \tan^{-1} \left(\frac{(U_1 \cos \psi + U_2 \sin \psi) / (U_1 + g)}{U_3} \right) \\
\phi &= \arcsin \left(\frac{(U_1 \sin \psi - U_2 \cos \psi) / \sqrt{U_1^2 + U_2^2 + (U_3 + g)^2}}{U_3} \right)
\end{align*}
\]

where \(\psi\) is commanded yaw attitude. Besides, the total control thrust generated by the four rotors can be computed from (13):

\[T = m[U_1 (s_\phi c_\psi c_\phi + s_\phi s_\psi) + U_2 (s_\phi s_\psi c_\phi - c_\psi s_\phi)] + (U_3 + g)c_\phi c_\theta \]

3.2. Attitude stabilization control design

Similar to position tracking control design, first construct the attitude error closed-loop equation as

\[\dot{\Theta}_e + K_\epsilon \dot{\Theta}_e + K_\Theta \Theta_e = 0 \] (18)

where vector \(\Theta_e = \Theta_\epsilon - \Theta\) denotes the attitude tracking error and \(\Theta_\epsilon = (\phi_\epsilon, \theta_\epsilon, \psi_\epsilon)^T\) the commanded attitudes. Gain matrix \(K_\epsilon\) and \(K_\Theta\) are both positive, so the error \(\Theta_e\) exponentially converges to zero. Substituting (2) and (4) into (18) yields the control torque:

\[\tau_a = \Omega \times I_\Omega + G_e - I_\Omega W^{-1} \Omega \Omega - I_\Omega K_\epsilon \Theta_\epsilon \]

\[+ I_\Omega W^{-1} K_\epsilon (\Theta_e - \Theta_\epsilon) + I_\Omega W^{-1} (\dot{\Theta}_e + K_\epsilon \dot{\Theta}_e) \] (19)

To this end, conventional flight control systems separate the control problem into an inner loop that controls attitude and an outer loop that controls the translational movement. Under two-timescale separation assumption, the dynamics of \(\Theta_\epsilon\) and \(\Theta_e\) can be ignored within small enough sampling time, i.e. \(\Theta_e = \Theta_\epsilon = 0\). Then, equation (19) can be further simplified as

\[\tau_a = \Omega \times I_\Omega + G_e - I_\Omega W^{-1} \Omega \Omega - I_\Omega K_\epsilon \Theta_\epsilon + I_\Omega W^{-1} K_\epsilon (\Theta_e - \Theta) \] (20)
However, this kind of manipulation requires excellent response of the motors and may result in degradation of the performance when the quadrotor leaves the hovering position. Although the commanded signals θ_e is known, it is quite complicated and boring to obtain analytically the dynamics $\dot{\theta}_e$ and $\ddot{\theta}_e$. To avoid the intricate calculation and the dependence on timescale separation, a complementary third-order time optimal TD is proposed to estimate the commanded signal dynamics. And the discrete-time form is given by

$$
\begin{align*}
U(k) &= -\left[6(X_i(k) - \theta_e) + 12fh^3X_i(k) + 11h^3X_i(k)/6\right]h^3h^3 \\
X_i(k+1) &= X_i(k) + hX_i(k) + h^3X_i(k)/2 + hU(k)/6 \\
X_2(k+1) &= X_2(k) + hX_2(k) + h^3U(k)/2 \\
X_3(k+1) &= X_3(k) + hU(k)
\end{align*}
$$

(21)

where h is the sampling time and adjustable parameter f is called filtering-factor. Then the estimated version of derivatives can be replaced with $\dot{\theta}_e = X_2$ and $\ddot{\theta}_e = X_2$. Hence, the control torque is now modified as

$$
\tau_e = \Omega \times I_\Omega + G_e - I_\Omega W^{-1}\Omega - I_\Omega K_\Omega \\
+ I_\Omega W^{-1}K_4(\ddot{\theta}_e - \dot{\theta}_e) + I_\Omega W^{-1}(X_1 + K_3X_2)
$$

(22)

4. Stability Analysis and Parameter Settings

Closed-loop stability of the proposed control system needs to be verified, because in this control design the commanded signal dynamics is estimated by TD instead of calculating them exactly. Substituting (20) into (18) yields

$$
\ddot{\theta}_e + K_3 \dot{\theta}_e + K_4 \theta_e = \ddot{\theta}_e + \dot{\theta}_e
$$

(23)

where $\dot{\theta}_e \triangleq \theta_e - X_1$. The stable tracking error of the attitude is $\theta_e = K_3^{-1}(\ddot{\theta}_e + \dot{\theta}_e)$. However, the time optimal third-order TD guarantees that the state X_1 converges to the commanded input θ_e in three steps. Then we have $\dot{\theta}_e = \theta_e - X_1 = 0$ provided θ_e keeps constant or slow time-varying within the three steps. In practice this constraint is reasonable since the variation of the position is much slower than the response of TD. Thus, the tracking stable error will converge to zero ultimately, and so is the position tracking error.

Remark: The finite bandwidth of any specified TD or filter results in bounded attitude tracking error. Large parameter K_4 can be selected to decrease the ultimate tracking error.

The design parameters of the trajectory tracking controller proposed in this paper include position tracking controller gains K_1 and K_2, attitude stabilization controller gains K_3 and K_4, and filtering factor f. The guidelines for the parameter selection are summarized as follows: since the timescale separation requirement between attitude and linear dynamics is alleviated and even eliminated, this control design algorithm only requires each K_i ($i = 1, 2, 3, 4$) to be positive definite. The attitude and the position control gains can be selected independently to satisfy their own bandwidth. Unlike the timescale separation case, larger inner loop gains than outer loop ones have to be satisfied to guarantee the closed-loop stability. The selection of filtering factor f should be a compromise between the control energy and the noise rejection. Besides, too large f will result in more phase-delay of differential signals.

5. Numerical Simulation

In order to verify the effectiveness of the proposed controller, a numerical simulation is performed using data taken from [3], as given in Table 1. Here we will ignore the dynamics of DC motor and only focus on the control law design. The control design parameters in simulation is fixed at $K_1 = K_3 = \text{diag}\{2, 2, 2\}$, $K_4 = K_4 = \text{diag}\{1, 1, 1\}$, And the filtering factor is chosen as $f = 10$. In consideration of the limitations of real measuring device, the sampling time is fixed to $h = 0.01\text{sec}$. The initial positions and Euler angles are $p_0 = \theta_0 = (0, 0, 0)^T$, so are linear and angular velocities respectively. The desired trajectory is a horizontal rectangle and given by
where \(f_{sg} \) denotes an interval function and is expressed as
\[
f_{sg}(x,a,b) = \left[\text{sign}(x-a) - \text{sign}(x-b) \right]/2
\]
where \(0 \leq a < b \).
This paper has presented a trajectory tracking control design methodology for a quadrotor unmanned aircraft: a PD control algorithm with a complementary time optimal TD to eliminate two-timescale separation assumption. A main motivation was driven by the requirement of simplifying the computation of commanded derivative signals accurately. In comparison with previous control design algorithm with inner-outer-loop structure case, the better performance was accomplished by the controller designed in this paper. Finally, numerical simulation of a typical trajectory tracking of a small quadrotor was performed to demonstrate the validity of the proposed controller.

7. Acknowledgment
This work was partially supported by Research Foundation for Key Disciplines of Beijing Municipal commission of Education (XK100060422). The author sincerely acknowledges the motivating discussions with Professor Wei Huo of the Seventh Research Division, Beihang University.

8. References