The Research on Intelligent Detecting of Greenhouse Environment for Cucumber Growth

Ming Chen, Tao Chi, Hanfei Zhang and Guofu Feng
Department of Information, Shanghai Ocean University
Shanghai, P. R. China 201306

Abstract—Due to the complexity and changeableness of greenhouse environment, the growth environment of cucumber is difficult to detect. The data fusion is adopted to process the temperature, humidity and illumination to provide the detecting information. And for the disadvantage of the traditional Average algorithm which could not eliminate the drawback of the sensors in the data fusion, this paper uses the Fuzzy C-Means Algorithm (FCM) to fuse the data. The experimental results show that the FCM is better than Average algorithm in fusing the data. And the FCM improves the accuracy of the detection.

Keywords—greenhouse; data fusion; the Fuzzy C-Means Algorithm

1. Introduction

From the eighties, greenhouse facilities have a rapid development. The technology of greenhouse has broke through the constraints of the geography and climate. Greenhouse achieves the anti-season production[1]. Environmental control can not rely on manual operation because of the hostile greenhouse environment (high temperature, high humidity, etc.), therefore, it requires automatic control in the greenhouse environment. The detection system of greenhouse environment is an important part of automatic control. Many scholars had researched on how to obtain the detecting information of the greenhouse. In 1989, Japanese scholars Hashimoto proposed SPA (speaking plant approach). The core of SPA is to use the imaging sensor on the greenhouse plants to carry out non-destructive detecting. Ting, Chun-Jiang Zhao and Xie Shouyong used the computer vision to get the information of plant growth[2][3].

This paper proposes a detection plan of the multisensors data fusion technology and expert system[4]. Due to the disadvantage of the traditional Average algorithm, this paper uses the Fuzzy C-Means Algorithm (FCM)[5][6] to fuse the data.

2. Expert Knowledge and data fusion

Based on expert knowledge, we classify the growth environment of greenhouse cucumber into three categories (suitable, more appropriate, not suitable).

The growth condition of greenhouse cucumber is shown in Tab.1.

<table>
<thead>
<tr>
<th>environment factors</th>
<th>Suitable</th>
<th>more appropriate</th>
<th>not suitable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (°C)</td>
<td>18~30°C</td>
<td>1018°C and 3035°C</td>
<td>less than 10°C or more than 35°C</td>
</tr>
</tbody>
</table>

*Corresponding author.
E-mail address: zhanghanfei2006@163.com
We use data fusion technology to process the environmental datas. Data fusion fuses the part of information obtained by the same or different types of sensors to describe things, and eliminates redundancy of the information, and improves the accuracy of Intelligent Systems Decision[7].

The processing of data fusion is shown in Fig.1.

3. Proposed Fusion method based on FCM Algorithm

Sample set of greenhouse environment is: \(X = \{x_1, x_2, ..., x_n\} \in \mathbb{R}^S \); The feature vector \(x_k = (x_{k1}, x_{k2}, ..., x_{kn})^T \in \mathbb{R}^S \). \(x_k \) corresponds to a point of feature vector space. \(x_{kj} \) is the value of \(x_k \) on the J-dimensional. Greenhouse environmental factors is: \(x_{k1}, x_{k2}, ..., x_{kn} \). FCM algorithm classifies the n-sample into three fuzzy groups, and solutes each of the cluster center to achieve the minimum non-similarity index of value function. The measurement data \(x_i \) belongs to the sensor \(i \). The total of the membership of a data set is equal to 1.

\[
\sum_{i=1}^{3} \mu_{ij} = 1, j \in [1, n]
\]

where \(\mu_{ij} \) is the data \(x_j \) belonging to cluster center \(c_i \) level.

Then, FCM’s value function is the generalized form of the equation (1):

\[
J(U, c_1, ..., c_n) = \sum_{i=1}^{n} J_i = \sum_{i=1}^{n} \sum_{j=1}^{n} \mu_{ij}^{m} d_{ij}^{2}
\]

\[
d_{ij} = ||c_i - x_j||
\]

\[
\mu_{ij} \in (0,1), m \in [1, \infty]; c_i \ is \ the \ fuzzy \ cluster \ centers \ of \ group \ I \ ; \ d_{ij} = ||c_i - x_j|| \ is \ the \ euclidean \ distance \ between \ the \ cluster \ center \ of \ group \ i \ and \ the \ data \ of \ j; \ m \ is \ a \ weighted \ index.
\]

Construct the new objective function and achieve the minimum necessary conditions of formula (3).

\[
\mathcal{T}(U, c_1, ..., c_n, \lambda_1, ..., \lambda_n) =
\]

\[
J(U, c_1, ..., c_n) + \sum_{j=1}^{n} \lambda_j (\sum_{i=1}^{j} u_{iq} - 1)
\]

\[
= \sum_{i=1}^{n} \sum_{j=1}^{n} u_{iq}^m d_{ij}^{2} + \sum_{j=1}^{n} \lambda_j (\sum_{i=1}^{j} u_{iq} - 1)
\]

is the n-type Lagrange multiplier constraint of formula(2). We derivate all the input parameters to reach the minimum necessary conditions of formula(3).

\[
\begin{align*}
\lambda_j &= \sum_{i=1}^{n} u_{iq}^m x_j \\
\sum_{j=1}^{n} u_{iq}^m \\
\mu_q &= \frac{1}{\sum_{i=1}^{n} \left(\frac{d_{ij}}{d_{ij}^m} \right)^{2/(m-1)}}
\end{align*}
\]

FCM algorithm is a simple iterative process according to the above two necessary conditions.
Using the following steps solves the cluster centers c_i and attached to the matrix U.

Step 1: Initializing membership matrix U with the value of a random number between 0 and 1 to satisfy the constraints of formula (1);

Step 2: Calculating 3 cluster center c_i with formula (5), $i=1,2,3$;

Step 3: Solving the value function with formula (2) If the value of the value function is less than a determined value or the last value of the value function, FCM algorithm will stop;

Step 4: Calculating the new U matrix with formula (6) and return to Step 2;

FCM algorithm can also be initialized cluster center, and then implementation of the iterative process. Performance of FCM algorithm depends on the initial cluster centers. Since we can not ensure that FCM algorithm converges to an optimal solution, we use another method to determine the initial cluster centers quickly or use different initial cluster centers to start the algorithm that is run several times.

The principle of the FCM clustering algorithm: Select large amounts of greenhouse environmental data as samples, containing suitable growth period, more appropriate growth period, not suitable growth period. Classify this historic data into three clusters (suitable cluster, more appropriate clusters, not suitable cluster). And adjust parameters of clustering algorithm. Then let the new data take part in clustering. If the number of new data samples were clustered into “suitable cluster”, it indicates the growth of greenhouse environment suitable for cucumber.

4. Experiment

The data of Tab.2 is collected by the 10 sensors.

Number1 and number2 locate the entry position, number 3 and number 4 locate the left side of entry door, number 5 and number 6 locate the middle of greenhouse, number 7 and number 8 locate the left side of the tail, number 9 and number 10 locate the right side of the tail.

<table>
<thead>
<tr>
<th>Site</th>
<th>Temperature (°C)</th>
<th>Humidity (RH/%)</th>
<th>Illumination (L/klx)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15.5</td>
<td>73</td>
<td>16914</td>
</tr>
<tr>
<td>2</td>
<td>15.2</td>
<td>72</td>
<td>15500</td>
</tr>
<tr>
<td>3</td>
<td>16.4</td>
<td>71</td>
<td>13214</td>
</tr>
<tr>
<td>4</td>
<td>16.1</td>
<td>72</td>
<td>9653</td>
</tr>
<tr>
<td>5</td>
<td>20.7</td>
<td>62</td>
<td>20427</td>
</tr>
<tr>
<td>6</td>
<td>21.2</td>
<td>63</td>
<td>21016</td>
</tr>
<tr>
<td>7</td>
<td>9.1</td>
<td>42</td>
<td>2146</td>
</tr>
<tr>
<td>8</td>
<td>18.5</td>
<td>70</td>
<td>14026</td>
</tr>
<tr>
<td>9</td>
<td>18.2</td>
<td>66</td>
<td>17104</td>
</tr>
<tr>
<td>10</td>
<td>18.7</td>
<td>71</td>
<td>18438</td>
</tr>
</tbody>
</table>

(1) The average algorithm

Average greenhouse temperature is: $T=16.96$ °C
Average greenhouse humidity is: $RH=67.2\%$
Average greenhouse illumination is: $L=14843.8$klx

The temperature, humidity and illumination are not suitable for the growth of cucumber according to the average value.

(2) FCM algorithm
Most of the data were clustered into “Suitable cluster” from the table 3 and figure 2.

FCM cluster analysis algorithm is shown in Fig.2:

![Fig.2 Schematic diagram of result of cluster analysis](image)

<table>
<thead>
<tr>
<th>TABLE.3 RESULT OF FCM CLUSTERING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster category</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>Suitable cluster</td>
</tr>
<tr>
<td>More appropriate cluster</td>
</tr>
<tr>
<td>Not suitable cluster</td>
</tr>
</tbody>
</table>

It shows that the growth of greenhouse environment is suitable for cucumber.

(3) Compared with two algorithms

1. Sensor 7 happens serious shortcoming form Tab. 2. Average algorithm does not remove the wrong data. But FCM algorithm clusters the wrong data into “Not suitable cluster”, which does not affect the results. Therefore, FCM algorithm does not have any impaction on the results even if some sensors have drawbacks.

2. Remove the wrong data and use the average algorithm:

 \[T=17.8{}^\circ{}C; RH=69\%; L=16254.6\text{klx}. \]

 The temperature and humidity are not suitable for the growth of cucumber, and the illumination is appropriate for the growth environment of cucumber. But it is suitable for the growth of cucumber by using FCM algorithm. Therefore, The experimental results show that the FCM is better than Average algorithm in fusing the data.

5. Conclusion

Using FCM algorithm can improve the accuracy of detection, especially on the conditions of some sensors lose effectiveness in the system. System can obtain the information of greenhouse environment whether it is suitable for the growth of cucumber or not, according to other well sensors.

6. Acknowledgements

Funding for this research was supported by National High Technology Research and Development Plan --- “digital technology research and demonstration on intensive farming of Penaesus Vannamei” (National 863 Plan, 2007AA10Z238).

7. References

